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ABSTRACT 

We relate reparametrizatlons of the parameter LT to point 

transformations of scalar fields in "loop space," the conflguratlon 

space of string fleld theory. Formulas are given for the changes 

induced by these transformations on the infinite set of "component" 

spacetime-tensor fields into which a scalar field on loop space may be 

decomposed. New derivative operators on loop space are defined, 

motivated by the parametrization-dependence of the mapping from loop 

space to spacetime. A generalization to loop space of the 

Einstein-Hllbert Lagranglan is proposed as a candidate for a 

Znd-quantized string Lagrangian not tied to any preferred background 

geometry. 
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1. MOTIVATIONS FOR CONSTRUCTING A STRING FIELD THEORY 

In describing the quantized dynamics of point particles, we can 

utilize either a lst-quantized or a 2nd -quantized formalism ("field 

theory"). Until recently, work on the dynamics of strings has, with few 

exceptions [l-3], made exclusive use of 1st quantization. 

First-quantized methods are well-suited for studying scattering 

problems, since the propagators of a lst-quantized theory describe small 

fluctuations of fields about their background values. 

It is in addressing questions involving large fluctuations of the 

background fields that 2nd quantization is generally of value. The most 

familiar example of a "large" fluctuation playing an important role in 

physics is the Higgs mechanism [lo]. Another example, of less certain 

(to date) physical relevance, but of supreme theoretical relevance for 

string theories, is the spontaneous compactification of spatial 

dimensions in a theory which Is defined with more than three of them to 

begin with (such as every string theory currently believed to be 

consistent). In the process of spontaneous compactification it is the 

gravitational field whose background value is of relevance. Since the 

gravitational field is one of the "component" dynamical degrees of 

freedom of a string theory, we must be able to deal with "large 

fluctuation questions" in string theories if we are to understand how 

such theories, constrained as they are to twenty-six or ten dimensions, 

somehow yield our (apparently) four-dimensional world. (Besides 

gauge-symmetry breaking and spontaneous compatification, there are, of 

course, other interesting--if perhaps less crucial--questions which 

lst-quantized methods seem ill-suited to tackle, e.g.: Do "stringy" 

black holes have singularities? Do initial singularities occur in 

"stringy" cosmologies? What is the spectrum of primordial fluctuations 

in these cosmologies?...) 

If we are to construct a string field theory to deal with problems 

of this nature, It is thus clear that the string field theory we 

construct should have the following property: The background values of 

all fields, especially the gravitational field, should be determined 

dynamically, without any one set of background values holding a 
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preferential position in the very formulation of the theory. Otherwise 

we may simply be putting in by hand that which should properly be the 

theory's output. 

Unfortunately this property is not possessed by any candidate 

string field theory with which the present authors are familiar [l-9]. 

In particular, these theories are constructed in terms of a flat 

background geometry, and the dynamical gravitational degrees of freedom 

are deviations from this preferred non-dynamical background. So, issues 

of fundamental interpretation aside, these theories are technically best 

suited for studying geometrical questions involving small fluctuations 

away from flat spacetime; precisely the case where lst-quantized theory 

is applicable. 

Needless to say, what is required is a 2nd quantized string action 

not tied to a special background geometry. This action must contain 

symmetries which, in the particle-field-theory ("zero-slope") limit, 

reduce to the gauge and general-coordinate invariances which 

lst-quantized string theories possess in this limit. One possible 

source of symmetries is the geometry of loop space. In the following 

two sections we will study loop space and fields living on loop space, 

investigating those properties which are independent of the metric of 

the spacetime from which the loop space is constructed, or of a choice 

of actlon for the fields. In the final section we will discuss the 

relation of loop-space transformations to physical gauge symmetries, and 

will propose a candidate for a string field theory action formulated 

independently of a preferred background geometry. 

II. REPARAMETRIZATIONS AS TRANSFORMATIONS ON LOOP SPACE 

In particle field theory, the dynamical variables are fields which 

are functions of zero-dimensional subsets of spacetime, i.e., points. 

In string field theory the fields are functions of one-dimensional 

subsets of spacetime, i.e., curves X"(U), p=l,...,d, OS&V. Strictly 

speaking, the fields are functionals of xv(u), since it takes a d-fold 

infinity of numbers to specify the curve xv(o). A functional may be 

regarded as a limiting case of a function of a finite number of 
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variables: 

P[xqc7)]-P[x’(o.ol).x~(o.oz),...,xqH)J (2.1) 

A function of many variables will, in general, have a different value if 

we change the order of its arguments. For example, say x"(a) describes 

a closed curve, x~(n)=x~(O). Let 

a-6 = 0 - 0.02 

and define 

(2.2) 

P(c) t xv(;) (2.3a) 

i[xqc)] = Y[TP(o)l (2.3b) 

Then 

P[x~(~)]-u[xqn-o.ol),xqn),...x”(n-0.02)] (2.4) 

and if the initial function rP is chosen arbitrarily, it will in general 

be true that 

P[x”(o)] i Y[xqc)] 

Thus, the space in which the functionals Y[xn(u)] live is the space 

of parametrized curves in d-dimensional spacetime. We will refer to 

this space as "loop space". (For simplicity we restrict our attention 

to closed curves, except where indicated otherwise). 

An infinitesimal motion of a point in loop space corresponds to an 

infinitesimal displacement in spacetime of each point of the curve x"(o) 

to yield the curve P(o); 

P(o) = XV(U) + d(c) (2.5) 

where E is an infinitesimal parameter and v"(o) is a spacetime vector at 

the point on the curve XT' with parameter label (I. So, a vector In loop 
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space at the loop-space point xv(o) is a vector field in spacetime 

defined along the parametrized curve in spacetime XT'(O). To each 

parametrized curve in spacetime we can associate a different spacetime 

vector field, thus obtaining a loop space vector field vp[x](a). 

We can now identify certain point tranformations in loop space, 

x~(o)iX~(o), with "reparametrizations" of U, a-6. A point transformation 

In loop space is a reparametrization if it maps each point xu(u) on the 

original curve to a point lip(u) which is also a point of the original 

curve xv(o). I.e., xu(a)+lu(o) is a reparametrization if there exists a 

function Z(O) such that, for all (I, 

P(o) = Xyii(o)) * (2.6) 

Since we can define reparametrizations which differ from one curve to 

another, we should really write O[x](o); or, for infinitesimal 

reparametrizations, 

2 q 0 + E g[x](o) . (2.7) 

Consider an infinitesimal point transformation of the form (2.5); if 

this transformation is an infinitesimal reparametrization, then, using 

(2.7), 

Xqo) + ~vqx](a) = xqu+eg[x](o)) 
(2.8) 

c x'(u)tEg[x](a) d$ . 

So, if a vector field in loop space is to correspond to an inflnltesimal 

reparametrization, it must be of the form 

v;[w = s[xl(~)x”(o) (2.9) 

where 
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*!e . 
da 

(2.10) 

the corresponding spacetime vector field vn[x](a) must be 

x’qu) 

That is, 

everywhere tangent to the curve xv(a), as we might intuitively expect. 

Having identifled point transformations In loop space corresponding 

to lnfinitesimal (I reparametrizations, we are now in a posltion to 

define the action of reparametrizations on scalar functions on loop 

space. If P[X] is a scalar functional of the curve XT'(U), then the 

"reparametrized" functional 'P[x] is a scalar functional which has the 

same value at xp(a)as 'P[x] has at XP(o)=xn(o)+~v#[x](o): 

;[xq L Y[P] = Y[XW[X]] 

To O(E), 

P[Ti p= ‘p[x + t AvR~[Xl 

where the derivative operator A VR [111, 

Wxl 
A$Wl * f;d~v;PlW axrc,j 

(2.11) 

(2.12) 

can of course be defined for any loop-space vector field v~[x](o), not 

just those of the form (2.9). 

III. REPARAMETRIZATIONS AS TRANSFORMATIONS OF TENSOR FIELDS ON 

SPACETIME 

To investigate the relation between infinitesimal 

reparametrizations and linearized gauge transformations we must first 

describe the relation between 'P[x(o)] and its "component" tensor fields 

[1,21. Expand P[x(u)] in a Taylor series about a point in loop space 

which also happens to be a point in spacetime; i.e., the zero-length 

curve 



&' = $doxp(o) . (3.1) 

Then 

Y[x~] = Y[;"] + j"do m 
0 axq (I) 

I 
(xqo)-;q 

,lk;;P 
(3.2) 

+ 1 j'do do 62Y[X] 
2! o 1 2 L?XQ(U~)6X~2(02) 

I 

(x"l(ol)-;'1)(x~2(~2)-~~2) t... 

Choose as a basis for functions of [r, 05o<_n, a set of functions 

satisfying 

igof;(o)fm(o) = 6 
m 

F f (0 )f (0. ) = 6(01-a2) 
F 1 F 2 

fo(u) = f;(o) = $ * 

(3.3a) 

(3.3b) 

(3.3c) 

Then 1 [xv(a)) may be expressed in terms of an infinite number of tensor 

fields which live on the spacetime manifold with coordinates gp: 

‘p[x”(o)l =jo F If r1 
. ..$I#0 xfiI-.- 

x~lg+JI 
El Pl*-.rI 

(5 
I' 

(3.4) 

where (for ,wO) 
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BS1 .-*!-I (;;, 
!q..-rI 

= 2 j"do . ..da 6 8 
I!0 1 ax”l(02)“‘- 

WI} f b,). . .f&) 
@I(q) -Fl I 

(3.5) 

x=x 

and 

x; 5 l;dof; @)x'(a) (3.6) 

We now study how the components 

of Y change under an infinitesimal reparametrization of the form (2.8). 

We will restrict our attention to curve-independent reparametrtzations; 

that is, reparametrlzations generated by loop-space vector fields of the 

form 

@(CT) = g(o)x’qo) 
r (3.7) 

rather than the more general form (2.8) (Operators of this form appear 

as parts of the Virasoro operators of flrst-quantized string theory, as 

we discuss in section IV. Reparametrization fields of the more general 

form (2.8) may be of importance, but we shall not consider them here). 

Define 

so 

g(o) = F gFfp * 

(3.8a) 

(3.8b) 

Using the above definition, (2.13), (3.4),(3.7), and the relations 
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f& = 6;f;w , W 

6XP = a’l1 
6X”(O) v T 

which follow from (3.1) and (3.6), we find that 

A,$xl = z x’ll X’lI I-l ,t$Lpo h”’ $1 

a 
- d2 ***h (;) + zg yJ1 

-El a& u2...n1 b b Jn 

In (3.10) we have chosen 

f (fl) = 1 ezifia 
F Jn 

and used the relation 

& 
lq.. 

.E a...bb...hI = 
. . ..ib...ha...EI 

‘“a’* -rb*.-“I Pl***“b.**~a***“I 

which fol lows from the definition (3.5). 

(3.9a) 

(3.9b) 

(3.10) 

(3.11) 

The components of any scalar function on loop space may be obtained 

using (3.5) or, equivalently, by taking derivatives with respect to the 

xp's and evaluating the result at xp = 0 (i.e., at xv(o) = gn). The 

first three components of (2.12) are, therefore 
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6 - Y - E Avr~‘IXE = o= 0 

a - 
ax: 

(Y - 'p - E Av;)& = o= 0 

(3.12) 

(3.13) 

a a- (Y - 'p - E AvJ)IxI = o= 0 

axa axa 
9 m2 

Using (3.4) and (3.10) and defining 

(3.14) 

ml 6B ::-z; (;;) = I;ml***mI (;;) _ $**9 (;;) (3.15) 
‘yl Ctl...“I CXl...CXI 

where B -“1:::~: (g9’**9) is a component of i(P), (3.12)-(3.14) become 
“1 “1 ..‘“I 

68(i) = 0 (3.16) 

6B;(;) = p (3 @& + zgb(l-6m,-b)BTb($} 
a? 

(3.17) 

b 

6B;;;; (i) = 2 (1-6 )(1-6 ) 
hill’0 h2’0 

c 
gb(1-6 )B 

mlfb,m2 

b 
ml.-b al a2 

g-m2 a 
+m[-- By;;) + 

2 2Jn a;a2 a1 c 
gb(l-6m2,-b)B 

mph ,ml 

b a2 “1 

(~11 

(3.18) 
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In (3.16)-(3.18), we have computed the changes in the components 

Bhl...FI * 
(xl 

Pl*..PI 

of Y with regard to a fixed basis 

X $1 XVI 
1?1". $1 

; 

schematically, 

A Y - 66; * XL . (3.19) 

There are other ways to define the effect of a derivative operator on 

the component fields. In general. the xf's are changed under 

reparametrization. If 

Li = I3 + cg(u) (3.20) 

and 

?“(a) = XV(U) = xqop q(o)x’qu) (3.21) 

then 

?; = x; + cf;dof;(o)g(o)x'u(o) (3.22) 

(In obtaining (3.22) we require that the functions f&(a) retain their 

form under reparametrization, i.e., 

(3.23) 

To do otherwise would be to introduce at the outset a distinction 

between different choices of parametrization). Even the spacetime 

coordinates ;n are not invariant under arbitrary reparametrizatlons: 
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xv = xv t ; J;dog(o)x"(a) . 
, 

(3.24) 

for any reparametrlzation (3.20), (3.21), define the derivative 

operator ag by the relations 

9 xv= lim 1 (P - xv) ; fi f 0 
g F E-M)0 ,r, F 

Using (3.23)-(3.25) we find that 

%3x; = & x;y g&J , F # 0 
gg;;p = E 6 x;y ssm 1 * 

(3.25a) 

(3.25a) 

(3.26) 

(3.27) 

To obtain the action ofSg on the components 

E+ JI(;;) , 
Pl. **PI 

we require that gg reduce to the directional derivative In the 

direction v~[x](o) = g(a)x'p(o) when acting on scalars, 

&7 Y = Av Y , 
!3 r 

and that Bg obey the Leibniz rule; schematlcally, 

gg P = ( ag”C;‘. x; + Bh. ( “g”;’ . 
P 

We find that 

(3.28) 

(3.29) 
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BF1 
. ..fI 0 2ibk 
...rI (xl q (l-5 o) i - 

3 kel nI 
9 a 

. . ..$I !k+l-..FI 
(;;I 3 

Pl -bk ax& Vl..-Pkel Pktl...PI 

(3.30) 

for example: 

B(g) = 0 

BgB;(;) = 2 g 
aB(E) 

- 
II -F a;P 

(3.31) 

(3.32) 

ggB;: $(") = 2 gWkl klB;:(x) + 2 gTF2 & B;: (g) (3*33) 

Equation (3.33) may be reexpressed in terms of its antisymnetric and 

symmetric parts: 

9g8~~1~21(G) = a[:;)< ;;:2(') 

g BW2 
g (rlP2)(;;) = atbi)c 32(~) 

(3.34) 

(3.35) 

where 

(')$1&2 E 3 g A - lb2 
-F1 v 1 

g eF1 
-F2 P * 

(3.36) 
v 1 

The transformations (3.32), (3.34) and (3.35) are of the forms of 

linearized gauge transformatlons of Maxwell, Kalb-Ramond and 

gravitational fields, respectively. 

(In a physical closed-string field the vector component is removed 

upon imposing--either by restricting the space of states or by a 

projectlon operator in the Lagrangian--the requirement that tl be 

invariant under uniform curve-independent reparametrizatlons; i.e., 
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A Y=o 
"0 

where 

(3.37) 

v”[x](a) = g = constant . 
0 0 ygo 

XIV(U) 

The reader can verify that (3.37) implies 

BF1'**'I (E) = 0 
lq.-*PI 

unless tl+...+$T = 0 

(3.38) 

(3.39) 

so, in particular, B:(g) = 0 since & +O. 

For open strings the restriction (3.39) does not arise, since, for 

these, cl(o) = 90 = constant Is not a reparametrization, except for 

go = 0. For open strings 

P(0) = XV(O) , i’(n) = X”(T) 

so (2.8).(2.9), and (3.40) imply that 

(3.40) 

g(0) = g(n) = 0 1 (3.41) 

We cannot invoke here the lst-quantized equations of motion, 

x'n(O)=x'n(n)=O, since we are dealing with the field theory and x"(o) 

is, not a dynamical variable, but an element of the set which indexes 

the dynamical variables Y. So, we see that the only uniform 

reparametrization of open curves consistent with (3.40) is the tdentity, 

s(o) = 0). 

What is the infinitesimal transformation of Y such that the 

components of this transformation (i.e., with respect to fixed xf's) are 

of the form (3.30)? That Is, what operator Dg satisfies 

E DgY = (egg 8:) . x; ? (3.42) 

The required operator has the form 
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Dg = f p x;gernl f& . (3.43) 

It can be easily checked that, unless g(a) is identically zero, Dg is 

poJ a curve-independent reparametrization. That is, there Is no 

function q(o) such that 

D =A = J;do q(o)x'(u) c . 
9 w' 6Xm(o) 

(3.44) 

However, Dg does have a simple interpretation. Using (3.27b) and 

(3.43), we see that 

z 
ED =eg ;va = (xll-;r)a . 

9 9 a2 ah 
(3.45) 

so, E Dg is the spacetime translation operator which translates by an 

amount proportional to the shift in spacetime coordinate gn associated 

with a reparametrization 0 + u+Eg(u). 

IV. DISCUSSION 

Is either the A or 0 transformation a viable candidate to yield 

linearized gauge transformations in a physical string field theory? 

That is, should one attempt to construct loop space actions, functionals 

of T[x"(o)], which, at least linearly, are invariant under 

Y -t Y + 'A, P (4.1) 
r 

or 

Y + Y + &DglP ? (4.2) 

Invariance under (4.1) or (4.2) corresponds to invariance under 

component-field transformations such as (3.16)-(3.18) or (3.31)-(3.35). 

Although, as has been noted, (3.32),(3.34), and (3.35) are similar in 

appearance to familiar gauge-transformation laws, both (4.1) and (4.2) 
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differ from the usual gauge transformations in an important respect; the 

transformation parameters on the right-hand sides are themselves 

proportional to the fields which are being transformed, rather than 

totally arbitrary functions. Theories possessing invariance under (4.1) 

or (4.2) would thus be very different from conventional gauge theories 

[=I. If we want the usual electromagnetic, gravitational, etc., 

linearized gauge invariances to be contained in our theory, we must 

replace (4.1) and (4.2) with 

’ + ’ + EAvr’ 
(4.3) 

Y -f Y + cDgn (4.4) 

where Q is an arbitary scalar function on loop space. (Admittedly, in 

doing so we lose the purely geometric interpretation which (4.1), (4.2) 

have, although the operators Av and D g are still associated with 

geometric transformations in Foop space). The equations for the 

components of tranformations (4.3) and (4.4) are identical to those for 

the components of (4.1) and (4.2), except that, on the right-hand sides, 

&‘--‘I(;) 
“1 . ..PI 

is replaced by 

w El 
p1 

-:;:t”l ? 

where 

Q[X] =Ijo I: XV1 . ..x.; w 
Fl...!q 0 

. ..&I#0 51 
(xl - 

b, r1 ***PI 
(4.5) 

For example, (3.32) becomes 
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Bb(;)=yg-fi* . 
9P 

(4.6) 

Even with this improvement, the rule WY+EDgR is unsuitable in 

another way for use as a gauge-transformation law. Under this rule, a 

the component tensor fields transform as gauge fields. So, a theory 

with this symmetry would have an infinite number of physical gauge 

fields. 

As for Y+Y+tAvril, comparison with first-quantized string theory 

suggests that this is only part of the correct rule. In the 

first-quantized theory In flat spacetime a crucial role is played by the 

Virasoro operators [13]. Each of these operators is equal to the sum of 

a A" operator, for a suitable g(o), with another piece which is a 

Fouryer transform with respect to a of the operator 

-qw s e t -I-- 
6x~(a) 6x~to) 4n2,a2 n~~x”(o)x’Y(a) (4.7) 

( yJv is the Minkowski metric, and u' is a constant). In the context of 

string field theory it is not clear how to give these operators a 

geometrical interpretation [14]. There is of, course, a formal 

similarity with the mass-shell operator for point particles, 

-+\I L L. t m2 
axn ax" 

in that both (4.7) and (4.8) arise from the constraint equations 

satisfied by the respective canonical momenta, 

Pn(a)Pn(.) + -.-.I-- 
4$,‘2 'P 

x'qo)x'"(o) = 0 , 

PKPn +m2=0 9 

(4.9) 

as consequences of the choice of a parametrization-invariant action for 

the respective classlcal objects [13], 
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S(string) - J da dT[-(;)2(x')2+ (X.X')~] 
1/2 

, (4.11) 

S(particle) w J dr [-i2]l" . (4.12) 

This analogy suggests that the Nambu action (4.11) be regarded as a 

distance function in loop space, and that any metric tensor on "curved" 

loop space should have the property that the "interval" between the 

loop-space points xv(d), yp(o) is equal, at least for "nearby" points, 

to the area of the minimal surface between them. 

Having seen that loop-space geometry may bear at least some 

relation to physical gauge symmetries, we are motivated to propose a 

purely geometric candidate for a background-geometry-independent 

formulation of the string field theory action. Our proposal is a 

modification of an action fnvented by Freund and Nepomechie [15] in 

studying the geometry of Kalb-Ramond fields, and its potential 

applicability to string theory was originally noted by them. These 

authors take as their action the Einstein-Hilbert action constructed 

from a metric tensor living on a space even larger than loop space, 

namely, the fiber bundle (loop space) Q U(1). After certain @ & 

restrictions are imposed on the form of the metric and the xp limit 1s 

taken, this action reduces to the bosonic part of the action for 

ten-dimenslonal supergravity. 

Since 'I contains objects, 

with transformation properties slmilar to the linearized gauge 

transformation properties of a metric perturbation h,,, It seems 

unwarranted to introduce an additional field in the theory to describe 

the geometry. Indeed, one of the beauties of string theory is precisely 

the fact that gravltational degrees of freedom arise from the string 

degrees of freedom. We therefore suggest that one take as the 

loop-space metric tensor, out of which to construct the loop-space 

Einstein-Hllbert action, the second variational derivative of the scalar 

string field itself (not restricted to xf q O!): 
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9 o)=a2p[xlL . 
P&a 2 Y3x~l(ol)dx~2(02) 

(4.13) 

P is, in general, complex, so it may not be necessary to augment 

loop space with an additional U(1) fiber. The results of [15] seem to 

indicate that such a theory will have a suitable particle-field-theory 

(xp+ 0) limit; its properties as a string field theory (xt # 0) are 

currently under investlgation. 

We would like to thank Michlo Kaku and Stuart Raby for enlightening 

discussfons, and the Lewes Center for Physics for warm hospitality 

during the course of this work. 
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